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THE RADIAL HEAT EQUATION AND LAF'LACE TRANSFORMS 
L. R. Bragg, Case Institute of Technology 

1. Introduction. Let P be a real parameter and let Au denote 

PT1 the radial Laplacisn operator AP 3 Df + rDr. In some recent papers, 

the author [l] and D. T. Haimo [4] have been concerned with the study of 

expansions of solutions of the radial heat equation 

(1.1) & uht) = APu(r,t) 

in terms of the radial heat polynomials {RT(r,t)]@& and their Appell 

transforms C;;jWr,t)l~=, when p > 1 (the author's notations differ). The 

elements of these sets are defined by 

0.2) 
(a) Rr(r,t) = j!(4t)jLj 

(&l) 
(-r2/4t) 

(b) T(r,t) = t -2jSP(r,t)Ri(r,-t) 

in which L('-l)(x) 5 
is the generalized Laguerre polynomial of degree j 

and index 5-l and SP(r,t) is the source solution (4nt) -p/2e-r'/4t . 

Underlying the development of these expansion theorems is a pair of in- 

tegral representations of solutions of (1.1). The first representation 

yields a solution of (1.1) subject to the initial condition 

ub-, 0) = q(r) and is given by 

(1.3) u(r,t) = 
J Kp(r,5;t)dS)dS 

0 

in which 

(1.4) 
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and I denotes the modified Bessel function of index 5-l . The 
-- 
; iI. 

second representation for a solution of (1.1) for large t(t > CY 2 0) is 

given by 

b5) 

in which 

s 

co 
u(r,t) = C ,(rrS;t)+(5)dS 

0 

(1.6) <,(t,S;t) = (2rr)+12rl-P~2~'/2P (rs)e-12t 
-- 21 

and ~(5) is an entire function of growth (1,~) in s2. Although these 

representations are quite useful in many situations, the involvement of the 

Bessel functions in these integrals generally lead to complications in most 

applications. Moreover, a number of results of theoretical significance are 

not immediately evident from (1.3) or (1.5). 

In this paper, we develop representations alternative to (1.3) and 

(1.5) that involve Laplace transforms and their inverses. The importance 

of these alternate forms lie in the fact that .(i) the elements of distri- 

bution theory can be more readily fitted into the study 

properties of solutions of (1.1) and (ii) the extensive 

tables relating to Laplace transforms can be brought to 

utions of (1.1) in applications. We obtain in 4 3, for 

suit that the radial function $(r,t) is a solution of 

of solutions and 

literature and 

bear on the sol- 

instance, the re- 

(1.1) defined by 

(1.3) that corresponds to a point distribution involving r2-%(j)(r2). 

This permits another characterization for expansions of solutions of (1.1) 

in terms of the set {?!(r,t)}m . Finally, we note that inverse La- 
j=O 

place transforms often lead to convolution type integrals, some of which 

diverge in the ordinary sense. One can, nevertheless, attach meanings to 

such integrals through the use of finite and logarithmic parts of divergent 
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integrals [23. We give an illustrative example of one such integral in g 4. 

2. -lace Transform Representations. In this section, we - 

state and develop the integral representations alternative to (1.3) and 

(1.5). The proof of only the first of these will be undertaken since the 

second result follows by a similar line of reasonAng. It will also follow 

that if suitable data is supplied on the positive time axis, rather than on 

the r-axis, then we can obtain a solution of (1.1) by calculating the in- 

verse Laplace transform of a function involving this data. 

Theorem 2.1. Let u(r,t) be the solution of (1.1) defined by (1.3) 

that corresponds to the initial data u(r,O) = cp(r). Let 

(2.1) 

Then 

(2.2) u(r,t) = TT 

in which the variable in this inverse Laplace transform is replaced by 

r2/16t2. 

Proof. If we select a = r2/16t2 and m&e use of (1.3) and (1.4), 

we have 

W(r,t) = (4t) '1/2er2/4t(r2/16t ) 2 P/*-l 
45 t) 

co 
= 2 s VW5 

1"/2e-s2/4tap/4-l+2, 

0 ; l(&%S -- 

= I- (p(x1/2)xp/2-1e-x/4t a p/4-1/2I c;;] (2@& , 
0 $1 

this last following from the change of variables s2 = x. 

3 



Then 

(2.3) 

sp{W(r,t)] =sa emp%(r,t)da 
0 

= 
s 

o~~(xl/2)~'/2-le-" 
IJ 

f-i 
aempa[E] 1 

X 
0 $1 

s 

CD 
I cp(X 

l/2)xU/2-le-x/4t 1 
p 

ex/'dx 

Then solving for u(r,t), we obtain Theorem 2.1. The validity of the inter- 

change of the orders of integration from the second to the third member in 

(2.3) follows by absolute integrability while the value of the bracketed 

term in the third member of (2.3) is tabulated in [3]. 

Corollary 2.1. Let u(r,t) be a solution of (1.1) that corres- 

ponds to u(O,t) = f(t) and suppose that this u(r,t) can be represented 

by (1.3) for some q(r). Then u(r,t) has the representation 

(2.4) u(r,t) = e -r2/4t(r2/16t2) 

in which the variable in this inverse Laplace transform is replaced by 

r2/16t2. 

Proof. We need only identify the expression TV(p,t) in (2.1) for 

this. It follows from our hypotheses, (1.3), and (1.4) that for s > 0, 

(2.5) 

f(s) = u(o,s) = lim u(r,s) = 1 mc11-1e-52/4s 
cp&)dS 

r-+0 s 2~-ls%(5) 0 

1 
= 2'ls'l/2$) 0 s 

O3 xp/2-le-x/4s 
,pd2)~ > 



this last step following from the change of variables 52 = x. We now make 

the identification & = & - $ so that s = pt/(p-4t). Upon substituting 

this into the first and last members of (2.5), we get 

T (p,t) '= CI (4pt)'/21(~/2)(p-4t)-'/2 

The stated result follows upon substituting this into (2.2). 

Theorem 2.2. Let u(r,t) be a solution of (1.1) defined by the 

integral representation (1.5). L&t 
-It 

(2.6) 
+ $}x 

xd2-1J1 (x1/2)& . 

Then 

(2.7) u(r,t) = $,; Qp+i2 $(p,t)l 

in which the variable in this inverse transform is replaced by r2/4. 

3. Generalized Functions. We now relate the above theorems to dis- 

tribution theory in so far as it applies to the expansions of solutions of 

(1.1). Our first result relates the radial function %(r,t) to the dis- 

tribution r 2-&i)@) while the second result relates R:(r,t) to this 

ssme distribution. Our final result of this section gives a distribution 

characterization for expansions of solutions of (1.1) in 'terms of the set 

Theorem 3.1. Let the initial data cp(r) in Theorem 2.1 be selected 

to be r2%(')(r2) where 6(x) denotes the usuaJ. delta distribution. Then 

(3.1) u(r,t) = 
(&p/2 

42jl?(j + 5) 
i+,t) . 

Proof. If we use the fact that 
s 

holds for 
0 

the delta function, then we get 

- 
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p-'1/2 TP(p,t) = (4t)-j(p-4t)jp 
-'($ + j ) 

. 

But (p-4t)j = Zp{e4at8(j)(a)] 

Using the convolution theorem for Laplace transforms along with the 

properties of the Dirac distribution, we obtain 

1 
s 

r2/16t2 r2 

=(4t)jr(j + 5) 
( -- s> 

j +5-l 
e45t8(j)(<)d< 

0 16t2 

(-l)j Djie45t(r2 _ 
= (4t)jr(j + 5) I 16t2 

%)j + 142-l 3 s-0 

.r2/4t j+2 > 
cl- 1 

= (4t) j+p/2-+-(j + !i) 
D; 

I 
ema0 

I a=r2/4t ' 

r2 this last following from the change of variables 0 = 4t - 45t. If we now 

make use of the Rodrigues!. formula for the Laguerre polynomials 

(p.84 of Csl) and the definitions (1.2), it follows that the u(r,t) de- 

fined by (2.2) for this q(r) is given by (3.1). 

l3y similar reasoning, we can prove 

Theorem 3.2. Let the function g(r) in Theorem 2.2 be selected 

to be b(r) = r %-+$+,2)~ Then 

(3.2) 

On the basis of Theorem 3.1, Theorems 5.3 and 5.4 of [l], and 

Stirling's formula, we have the following characterization for expsnsions 

in terms of the set {gy(r,t)]y=o . 
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Theorem 3.3. Let [a.)" 
J j=O be a number sequence satisfying the 

condition lim sup jajl l/j = bu and let cp(r) = r2-' "c a.s(j)(r2) in 
j*- j=O J 

Theorem 2.1. Then the corresponding function u(r,t) given by 

u(r,t) = TN'/;! "c 
j=O 

converges absolutely to a solution 

(-l)ja 
j ?Jr,t) 

42jY(j + 5) 

of (1.1) in the half-plane t 7 u 2 0. 

Thus, the generalized function cp(r), in this case, acts as a potential 

function concentrated at the origin that gives a meaningful effect only 

after Q units of time have elapsed. From Theorem 3.2 and the results in 

B 5 of c11, an analogous theorem can be formulated for expansions in terms 

of the radial heat polynomials in the strip ItI < Q by regarding the 4(r) 

in Theorem 2.2 as a Potential function concentrated at r = 0 in the half 

planet7a. We omit its formal statement here, however. 

4. Finite and Iogarithmic Parts. In determining the inverse La- 

place transforms in (2.2), say, it is natural, in many situations, to make 

use of the convolution integral and in a variety of ways. It is clear 

from (2.1) that, in general, lim TCL(p,t) a 0 wQGi,!Le lim p -'j2T (p,t) = 0 
P+= Pdco 

and 170. In this case, one can write p -'"12T (p t) = CL ' {p 
-($ "E) 

I- 

{p-eTp(p,t)} for some E with 0 < E < CL/~. With this decomposition and = 
the abbreviation a = r2/16t2, it follows by the convolution theorem that 

k-l,, -1 
(4.1) 'Gepl{p'/2T,(p,t)] = ' a2 

r<g 4) 
*%tp b-ETp(p,t)3 - 

The choice of E will, of course, depend upon p and TII(p,t) as well a 

the particular form of the inverse transform one seeks. If, however, 

@ < 0, any integral of the form (4.1) diverges in the ordinary sense. It = 
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is still possible to associate meanings with such integrals by the use of 

the finite and logarithmic parts (pf and&) of divergent integrals. This 

procedure thus gives us a method for continuing solutions. For notations 

and basic definitions connected 

to [2]. 

We illustrate the method 

with this method, the reader is referred 

for only one example, namely q(r) = r2+. 

For this, Tp(p,t) = 4pt(p-4t) -1 
andp -'12T (p,t) = (4t)p 

-($l) 

CI (p-4+. 

If I.r= 2, this transform can be inverted directly to give 

gp1{p-'/2T,(p,t)]= 4te4at. If 1-1 7 2, we can write 

(4.2) g;1[p-'/2T,(p,t)] = 4t {ad2-2 * e4"t] . 
r($- 1) 

Although this integral is improper if 2 < p < 4, it converges nonetheless. 

Suppose, however, that CL 2 2 in (4.2). Then that integral is meaningless 

in the ordinary sense. For the purpose of attaching a meaning to this in- 

tegral, we examine separately the cases CL not an even integer and ~1 

an even integer. It is convenient to first rewrite the solution u(r,t) 

given by (2.2) and (4.2) for p 7 2 by making the change of vakirbles 

4aS=u. Then 

(4.3) u(r,t) = 
pP s r2/4t 

,3d2-2e-o& . 
r($- 1) 0 

Case (i) ~1 not an even integer. Then the solution of (1.1) 

is given by 

u(r,t) = 
pJ r2/4t 

r($-1) 
Pf o~/2-2e-o~ . 

Through an integration by parts, we can calculate u(r,t) explicitly to be 
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m 
u(r,t) = Z r 

2-11(r2,4t)V/2-l+je-r2/4t 

j=O 
r(c1/2+3 1 

$-P $ r2/4t 
+ 

r($+m) ’ 
,P/2-l+me-odo 

where m is the least positive integer such that ILL/~ + m > 0. Clearly, 

lim u(r,t) = r2+ for this. 
t -3o+ 

Case (ii) CI and even integer. In this situation, a solution may 

be defined by 

u,bA = 
i 

c2 PQ. V r2/4t 
cr-le-udu if CL=2 

0 1 

c r2-& 
is 

r2/4t 
2m Pf u m-2e-u da if CL= 2m, mS 0. 

0 

The constants C 23 here are so selected that lim u(r,t) = r2-2j 
t+ o+ 

and replace the reciprocal of the gamma function in (4.3) which vanishes. 

Using the technique for evaluating these, we finally obtain explicitly, 

\ 

1 
se i 

-?/4t ln(r2/4t) + 
s 

r2/4t 
(lrm)e-"du 

j 
, p = 2 

0 

u(r,t) = 

\ 

(-1)-m+3( -m+l)! 
r;(l) 1 

-m+l l-1) j r2 -cm+2-j3 2-a -r2/l+t $+-) r e 
c 

j=l ( -*1)(-m) . . . ( -m+2-j) 

[ + ,*. e-r2/4tln(r2/4t)+ hGJr2'4!ln3)eu&j 
0 

9 
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